

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 6277-6281

Tetrahedron Letters

Synthesis and complexing properties of 1,5:3,7-doubly bridged calix[8]arenes with mixed spanning elements

Luisa Gregoli,^a Laura Russo,^a Ivan Stefio,^a Carmine Gaeta,^a Françoise Arnaud-Neu,^b Véronique Hubscher-Bruder,^b Poupak Khazaeli-Parsa,^b Corrada Geraci^c and Placido Neri^{a,*}

^aDipartimento di Chimica, Università di Salerno, Via S. Allende 43, I-84081 Baronissi (Salerno), Italy ^bLaboratoire de Chimie Physique, UMR 7512 (CNRS-ULP), Ecole Européenne de Chimie Polymères et Matériaux, 25, rue Becquerel, 67087 Strasbourg Cedex 2, France ^cIstituto di Chimica Biomolecolare—Sezione di Catania, CNR, Via del Santuario 110, I-95028 Valverde (CT), Italy

Received 3 May 2004; revised 16 June 2004; accepted 22 June 2004

Abstract—Two different bridges were introduced at the 1,5:3,7-positions of *p-tert*-butylcalix[8]arene 1 using a two-step alkylation procedure. A probable cation template effect in the introduction of the second bridge was evidenced. The obtained bis-bridged derivatives 3 possess encapsulating properties toward alkali cations modulated by the length and nature of the bridges. © 2004 Elsevier Ltd. All rights reserved.

Among the 'major' calix[n]arenes¹ (n=4, 6, 8) the larger octamers² have been much less studied because prospecting a more intricate chemistry joined to a higher conformational mobility. However, their large dimensions make them somewhat attractive for the synthesis of molecular receptors for medium-sized compounds and, indeed, interesting complexing properties toward C₆₀-fullerene³ and photolabile cholinergic ligands⁴ have been reported. In these instances, the guest-directed fit of the calix[8]arene macrocycle or the host–guest mutually-induced fit is observed, respectively.

An alternative approach to calix[8]arene-based hosts relies on intramolecular bridging to effectively preorganize the macrocycle. One of the most interesting results of this approach has been the preparation, by both Shinkai⁵ and our⁶ groups, of highly preorganized D_{2d} symmetrical 1,5:3,7-doubly-bridged calix[8]arenes (compounds **3** with X=Z). As predicted by molecular mechanics calculations and demonstrated by X-ray diffractometry,^{6b} these derivatives possess a structure composed of four 3/4-cone clefts with a central polyhedral

0040-4039/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.06.094

cavity apt to encapsulate cations with a size-dependent selectivity. In fact, highly selective cesium ionophores were obtained using two identical o-xylylene^{5b} or dieth-ylene-glycol bridges.^{6a}

It is conceivable that introduction of bridges of different or mixed nature could give rise to derivatives with diverse or improved selectivity. Therefore, we decided to investigate this aspect and we wish to report here the first examples of calix[8]arene derivatives 1,5:3,7-doubly-bridged with mixed spanning elements.

The synthesis of these compounds, originally devised by us for the homogenous 1,5:3,7-double bridging,⁶ was based on two distinct alkylation steps, which allow the introduction of two different bridges (Scheme 1).

The first step makes use of Cs₂CO₃, in nonanhydrous DMF, to promote 1,5-mono-bridging of *p-tert*-butylca-lix[8]arene **1** with short spacers.⁷ It has already been exploited by us for the preparation of calix[8]arenes 1,5-bridged with the following spanning elements: tetra-methylene **2a** (68% yield),^{7b} crown-2 **2b** (88%),^{7a} crown-3 **2c** (78%),^{7a} *o*-xylylene **2d** (50%),^{7c} *m*-xylylene **2e** (80%).^{7c}

In the second step, the introduction of a further bridge at the 3,7-positions of compounds 2a-e is obtained in

Keywords: Calixarenes; Calix[8]arenes; Intramolecular bridging; Ionophores; Association constants.

^{*} Corresponding author. Tel.: +39-089-965262; fax: +39-089-965296; e-mail: neri@unisa.it

Scheme 1.

the presence of NaH in anhydrous THF/DMF (10:1, v/ v) at reflux.⁶ As reported in Table 1, the selected alkylating agents allowed the introduction of crown-4 and crown-5 bridges, in addition to the above ones. All combinations of these bridges were examined, also by considering the alternative order of bridging. In particular, 1,5-tetramethylene bridged **2a** was reacted with all alkylating agents to give derivatives **3ac-ag** in 35–99% yield (Table 1, entries 1–5).⁸ In a similar way, 1,5crown-2 **2b** led to the preparation of hetero-bridged derivatives **3bc-be** in 15–93% yield (entries 6–8).

Starting from 1,5-calix[8]crown-3 **2c**, *ortho-*, and *meta*xylylene-bridged derivatives **3cd** and **3ce** were obtained (entries 9 and 10) in almost quantitative yield (98% and 94%, respectively), while the corresponding crown-4 derivative **3cf** was formed only in a 10% yield (entry 11). A mixed *meta-* and *ortho-*xylylene bridged derivative **3ed** was obtained in excellent yield (94%) by using 1,5-*m*-xylylene-bridged **2e** as starting substrate (entry 12). In contrast, the same substrate gave the crown-4bridged derivative **3ef** (entry 14) in a lower yield (10%). It is worthy to note that this two-step procedure allowed also the synthesis of the two *meta-* and *ortho*xylylene homo-bridged derivatives **3ee** and **3dd**⁹ (entries 13 and 15) in excellent yield (98%).

The high yield observed in the insertion of the second bridge could be explained by the previously described cation templation in 1,5-bridged derivatives^{7b} that folds

the calix[8]arene skeleton in the 'tub-shaped' conformation¹⁰ more suitable to bridging with short spacers. On the basis of this hypothesis we tested the effect of an additional cation in some low-yielding reactions. Thus, simple addition of 5 equiv of Cs_2CO_3 in the reaction leading to **3ae** improves the yield from 37% (entry 3) to 85% (entry 16) due to a probable Cs^+ -template effect. In a similar way, addition of 5 equiv of Li_2CO_3 increases the yield of **3bc** from 15% (entry 6) to 55% (entry 17) indicating that the smaller cavity of **2b** gives a better fitting with the smaller Li^+ cation. On this ground, obviously, the other high-yielding reactions would rely on an effective Na⁺ templating effect.

Compounds **3** were readily characterized by spectroscopic methods.¹¹ In particular, homo-bridged derivatives **3xx** gave very simple ¹H NMR spectra characterized by two *t*-Bu singlets and one ArCH₂Ar AX system, typical of their D_{2d} -symmetry.^{5,6} Correspondingly, hetero-bridged compounds **3xz** gave three 1:2:1 *t*-Bu singlets and two ArCH₂Ar AX systems indicative of their lower C_{2v} -symmetry.

As anticipated, preliminary ¹H NMR experiments showed interesting cation complexing properties for bis-bridged calix[8]arenes **3**. Typically, upon addition of solid alkali picrate to a CDCl₃ solution of hosts **3** a new set of signal emerged due to the $\mathbf{M}^+ \subset \mathbf{3}$ complex formation, whose 1:1 stoichiometry was determined by spectral integration. Because of the heterogenous condi-

Table 1. Yield of 1,5:3,7-doubly bridged calix[8]arenes 3 in alkylation of 1,5-bridged derivatives 2 with bis-electrophiles in the presence of NaH (10equiv) in anhydrous THF/DMF (10:1, v/v)

Entry	2	Electroph. (equiv)	Time	Isolated
			(h)	compd (yield%)
1	2a	TsO(CH ₂ CH ₂ O) ₂ Ts (3)	26	3ac (50)
2	2a	$o-C_{6}H_{4}(CH_{2}Br)_{2}(1)$	26	3ad (99)
3	2a	$m-C_6H_4(CH_2Br)_2$ (3)	48	3ae (37) ^a
4	2a	$TsO(CH_2CH_2O)_3Ts$ (10)	28	3af (43) ^a
5	2a	$TsO(CH_2CH_2O)_4Ts$ (1)	30	3ag (35)
6	2b	$TsO(CH_2CH_2O)_2Ts$ (2)	72	3bc (15)
7	2b	$o-C_{6}H_{4}(CH_{2}Br)_{2}(1)$	40	3bd (93)
8	2b	$m-C_{6}H_{4}(CH_{2}Br)_{2}$ (2)	40	3be (92)
9	2c	$o-C_{6}H_{4}(CH_{2}Br)_{2}(1)$	40	3cd (98)
10	2c	$m-C_{6}H_{4}(CH_{2}Br)_{2}(1)$	40	3ce (94)
11	2c	$TsO(CH_2CH_2O)_3Ts$ (1)	72	3cf (10)
12	2e	$o-C_{6}H_{4}(CH_{2}Br)_{2}(1)$	72	3de (94)
13	2e	$m-C_{6}H_{4}(CH_{2}Br)_{2}$ (1)	72	3ee (98)
14	2e	$TsO(CH_2CH_2O)_3Ts$ (1)	72	3ef (10)
15	2d	$o-C_{6}H_{4}(CH_{2}Br)_{2}(1)$	27	3dd (98)
16	2a	$m-C_6H_4(CH_2Br)_2$ (1)	38	3ae (85) ^b
17	2b	$TsO(CH_2CH_2O)_2Ts$ (2)	90	3bc (55) ^c

^a 20 equiv of NaH were used.

^bCs₂CO₃ (5equiv) was added in the reaction mixture.

^cLi₂CO₃ (5equiv) was added in the reaction mixture.

tions a slow complexation kinetic was usually observed as illustrated by hetero-bridged *o*-xylylene/crown-3 derivative **3cd** (Fig. 1). In particular, this behavior also demonstrated that the complex is kinetically stable in the CDCl₃ phase (Fig. 1b). However, under homogenous conditions (CD₃CN/CDCl₃, 9:1 v/v) a complete complexation occurred within the time of sample preparation. In these instances, titration experiments demonstrated the kinetic lability of the complex in the homogenous CD₃CN/CDCl₃ phase.

The complexation-induced shifts (Fig. 1) clearly demonstrated that in the $\mathbf{M}^+ \subset \mathbf{3}$ complex the cation is encapsulated inside the spheroidal cavity delimitated by the eight calix[8]arene oxygens and by the two bridging elements (Fig. 2).

The cation extraction selectivity was estimated by standard two-phase picrate extraction experiments.¹² The results, summarized in Table 2, indicate that **3cd** shows the best extraction for cesium cation, but **3ac** appears also selective for it. A preference for rubidium cation is shown by compounds **3ae**, **3bd**, **3ce**, and **3ee**. A significant extraction of K⁺ is observed with **3be** with absence of selectivity. A shift of preference toward Na⁺ is given by **3cf** and **3de**.

1,5:3,7-Doubly-bridged calix[8]arenes were found not to be soluble enough in dissociating solvents like methanol and acetonitrile, frequently used for complexation studies. Some of them were more soluble in dimethylformamide where complexation equilibria revealed to be very sluggish. However their higher solubility in apolar chloroform allowed the determination of the association constant K_{ass} in this solvent according to the method described by Cram.¹³ Table 3 gives K_{ass} values of complexes of cesium and sodium picrates with ligands **3af**, **3ad**, **3be**, **3cd**, and **3de**.¹⁴ **3cd** displays a selectivity for cesium over sodium of 6.3 (expressed as the ratio of the association constants) in agreement with the extraction results. The other ligands show a slight preference for sodium, although the values of K_{ass} are close taking into account the experimental error.

Figure 2. Computer model of the $Cs^+ \subset 3cd$ complex. For clarity reasons the Cs^+ cation was drawn as a sphere of smaller dimension.

Figure 1. ¹H NMR spectra (400 MHz, CDCl₃, 25 °C) of 3cd upon addition of excess solid cesium picrate: (a) free host 3cd; (b) 48 h, and (c) 96 h after the addition of CsPic.

Table 2. Extraction percentages of alkali metal picrates from water into CH₂Cl₂ for bis-bridged calix[8]arene **3** (T=20 °C; $C_{Pic}=C_{Lig}=5.5\times10^{-5}$ M)^a

Compd 3	Cs^+	Rb^+	K^+	Na ⁺	Li ⁺
3ac	10	3	3	2	≤ 1
3af	9	6	7	13	6
3ad	8	8	9	10	7
3ae	≤ 1	5	≤ 1	≤ 1	≤ 1
3bd	≤ 1	4	≤ 1	≤ 1	≤ 1
3be	13	12	14	15	8
3cf	7	8	6	12	8
3cd	15	11	5	4	9
3ce	≤ 1	4	≤ 1	≤ 1	≤ 1
3de	10	8	10	14	6
3ee	6	14	7	$\leqslant 1$	$\leqslant 1$

^a Standard deviation of at least three experiments: ≤ 1 .

Table 3. Logarithms of association constants of cesium and sodium picrates complexes with selected ligands 3 in CHCl₃ saturated with H_2O at 25 °C

Compd 3	$Cs^+ (\log K_{ass})^a$	$\operatorname{Na}^+ (\log K_{\operatorname{ass}})^{\operatorname{a}}$
3af	5.4	5.7
3ad	5.1	5.5
3be	5.7	5.9
3cd	5.6	4.8
3de	5.5	5.8

^a Standard deviation of at least three experiments: 0.1-0.2.

In conclusion, we have synthesized the first examples of 1,5:3,7-doubly-bridged calix[8]arenes with mixed spanning elements, which possess encapsulating properties toward alkali metal cations. Experimental support for a probable cation template effect in the introduction of the second bridge were obtained. As anticipated, the length and nature of the bridges allow a modulation of cation preference from Cs^+ to Na^+ . A more detailed evaluation of complexation properties of these compounds is currently in progress in our laboratory.

Acknowledgements

Financial support from the Italian MIUR (COFIN-2003, Supramolecular Devices Project) is gratefully acknowledged.

References and notes

- For general reviews on calixarenes, see: (a) Böhmer, V. Angew. Chem., Int. Ed. Engl. 1995, 34, 713; (b) Gutsche, C. D. Calixarenes Revisited; Royal Society of Chemistry: Cambridge, 1998; (c) Calixarenes 2001; Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J., Eds.; Kluwer: Dordrecht, 2001.
- See in Ref. 1c: Neri, P.; Consoli, G. M. L.; Cunsolo, F.; Geraci, C.; Piattelli, M.; Chapter 5, pp 89–109.
- Atwood, J. L.; Koutsantonis, G. A.; Raston, C. L. *Nature* 1994, 368, 229; Suzuki, T.; Nakashima, K.; Shinkai, S.

Chem. Lett. **1994**, *699.* See also in Ref. 1c: Zhong, Z.-L.; Ikeda, A.; Shinkai, S; Chapter 26, pp 476–495.

- 4. Specht, A.; Bernard, P.; Goeldner, M.; Peng, L. Angew. Chem., Int. Ed. 2002, 41, 4706.
- (a) Ikeda, A.; Akao, K.; Harada, T.; Shinkai, S. *Tetrahedron Lett.* **1996**, *37*, 1621; (b) Ikeda, A.; Suzuki, Y.; Akao, K.; Shinkai, S. *Chem. Lett.*, **1996**, 963.
- (a) Geraci, C.; Chessari, G.; Piattelli, M.; Neri, P. Chem. Commun. 1997, 921; (b) Geraci, C.; Bottino, A.; Piattelli, M.; Gavuzzo, E.; Neri, P. J. Chem. Soc., Perkin Trans. 2, 2000, 185.
- (a) Geraci, C.; Piattelli, M.; Chessari, G.; Neri, P. J. Org. Chem. 2000, 65, 5143; (b) Consoli, G. M. L.; Cunsolo, F.; Geraci, C.; Neri, P. Org. Lett. 2001, 3, 1605; (c) Gaeta, C.; Gregoli, L.; Martino, M.; Neri, P. Tetrahedron Lett. 2002, 43, 875.
- 8. Synthesis of 1,5:3,7-bis-bridged calix[8]arenes 3: To a solution of 2 (0.037mmol) in dry THF/DMF (10:1, v/v, 10mL) NaH (0.37mmol) was added. The mixture was kept at reflux under stirring for 1 h and then a solution of alkylating agent (see Table 1) dissolved in THF/DMF (3mL) was added in several aliquots. The reaction mixture was stirred under reflux for 26–90h (see Table 1). After concentration under vacuum, the residue was triturated with 1 N HCl (30mL), collected by filtration, washed with MeOH, and dried. Analytically pure samples were obtained by crystallization or by column chromatography on silica gel.
- Bis(o-xylylene)-bridged calix[8]arene 3dd was previously obtained in 19% yield by Shinkai and co-workers, by direct alkylation of 1 in the presence of NaH (see Ref. 5a).
- Consoli, G. M. L.; Cunsolo, F.; Geraci, C.; Gavuzzo, E.; Neri, P. *Tetrahedron Lett.* **2002**, *43*, 1209.
- 11. Satisfactory microanalytical and spectral data were obtained for all new compounds. Compound 3ac: ¹H NMR (400 MHz, CDCl₃, 298 K) δ 1.16, 1.18, 1.24 (s, (CH₃)₃, 18H, 18H, 36H), 2.09 (s, OCH₂CH₂, 4H), 3.43 and 4.30 (AX, J=14.4Hz, ArCH2Ar, 8H), 3.44 and 4.30 (AX, J=14.3 Hz, ArCH₂Ar, 8H), 3.88 (s, OH₂CH₂, 4H), 4.07 (m, O(CH₂CH₂O)₂, 8H), 6.96, 7.04, 7.11, 7.14 (br s, ArH, 8H, 4H, 4H), 7.23 (s, OH, 4H). Compound 3ad: ¹H NMR (400 MHz, CDCl₃, 298 K) δ 1.06, 1.18, 1.32 (s, (CH₃)₃, 18H, 18H, 36H), 2.29 (s, OCH₂CH₂, 4H), 3.13 and 4.23 (AX, J=14.4Hz, ArCH₂Ar, 8H), 3.42 and 4.24 (AX, J=13.3 Hz, ArCH₂Ar, 8H), 4.14 (s, OCH₂CH₂, 4H), 5.75 (s, o-Xyl-CH₂O, 4H), 6.85 (s, Ar, 4H), 7.10 (d, J=2.2 Hz, ArH, 4H), 7.12 (s, ArH, 4H), 7.16 (d, J=2.2 Hz, ArH, 4H), 7.29 (m, o-Xyl-H, 2H), 7.36 (br s, o-Xyl-H, 2H), 7.64 (s, OH, 4H). Compound **3ae**: ¹H NMR (400 MHz, CDCl₃, 298 K) δ 1.21, 1.22 (s, (CH₃)₃, 18H, 54H), 2.18 (s, OCH₂CH₂, 4H), 3.45 and 4.27 (AX, $J=13.9\,\text{Hz}$, ArCH₂Ar, 8H), 3.49 and 4.33 (AX, J=14.2 Hz, ArCH₂Ar, 8H), 4.06 (s, OCH₂CH₂, 4H), 4.84 (s, m-Xyl-CH₂O, 4H), 6.74 (s, ArH, 4H), 7.02 (d, J = 1.8 Hz, ArH, 2H), 7.07 (d, J = 1.8 Hz, ArH, 2H), 7.11 (s, ArH, 4H), 7.17 (s, ArH, 4H), 7.20-7.38 (m, m-Xyl-H, 4H), 7.40 (s, OH, 4H). Compound 3af: ¹H NMR (400 MHz. CDCl₃, 298 K) & 1.16, 1.17, 1.33 (s, (CH₃)₃, 18H, 18H, 36H), 2.22 (s, OCH₂CH₂, 4H), 3.48 and 4.41 (AX, J=14.9Hz, ArCH₂Ar, 8H), 3.51 and 4.31 (AX, J=14.3 Hz, ArCH₂År, 8H), 3.64 (s, OCH₂CH₂, 4H), 3.93 (br s, O(CH₂CH₂O)₃, 6H), 4.15 (br s, O(CH₂CH₂O)₃, 6H), 7.05, 7.06, 7.18 (br s, ArH, 4H, 8H, 4H), 7.44 (s, OH, 4H). Compound **3ag**: ¹H NMR (400 MHz, CDCl₃, 298 K) δ 1.18, 1.21, 1.26 (s, (CH₃)₃, 16H, 16H, 36H), 2.00 (s, OCH₂CH₂, 4H), 3.71 (s, OCH₂CH₂, 4H), 3.49 and 4.33 $(AX, J=14.1 \text{ Hz}, ArCH_2Ar, 4H), 3.77 \text{ and } 4.15$ (AX,J=15.7Hz, ArCH₂Ar, 4H), 3.84, 3.96, 4.15 (br s, O(CH₂CH₂O)₄, 8H, 4H, 4H), 7.01 (s, ArH, 4H), 7.04 (d,

J=1.2Hz, ArH, 4H), 7.15 (s, ArH, 4H), 7.17 (d, J=1.2Hz, ArH, 4H), 7.44 (s, OH, 4H). Compound 3bc: ¹H NMR (400 MHz, CDCl₃, 298 K) δ 1.11, 1.20, 1.31 (s, (CH₃)₃, 18H, 18H, 36H), 3.42 and 4.40 (AX, J=14.5Hz, ArCH₂, Ar, 8H), 3.47 and 4.20 (AX, J=13.5Hz, ArCH₂Ar, 8H), 4.21 (m, OCH₂CH₂O, 2H), 4.29 (m, O(CH₂CH₂O)₂, 4H) 4.95 (s, OCH₂CH₂O, 2H), 6.94 (s, O(CH₂CH₂O)₂, 4H), 7.12-7.17 (m, ArH, 16H), 7.66 (s, OH, 4H). Compound **3bd**: ¹H NMR (400 MHz, CDCl₃, 298 K) δ 1.10, 1.16, 1.30 (s, $(CH_3)_3$, 18H, 18H, 36H), 3.34 and 4.23 (AX, J=13.3 Hz, ArCH₂Ar, 8H), 3.43 and 4.29 (AX, J=13.9Hz, ArCH₂Ar, 8H), 4.99 (s, o-Xyl-CH₂O, 4H), 5.76 (s, OCH₂CH₂O, 4H), 6.94, 7.06, 7.01, 7.11 7.12 (br s, ArH, 4H, 4H, 4H, 4H), 7.15 (m, o-Xyl-H, 2H), 7.32 (m, o-Xyl-H, 2H), 7.43 (s, OH, 4H). Compound 3be: ¹H NMR (400 MHz, CDCl₃, 298 K) δ 1.11, 1.17, 1.32 (s, (CH₃)₃, 18H, 18H, 36H), 3.36 and 4.31 (AX, J=14.3 Hz, ArCH₂-Ar, 8H), 3.51 and 4.39 (AX, J=13.4Hz, ArCH₂Ar, 8H), 4.78 (s, m-Xyl-CH₂O, 4H), 5.08 (s, OCH₂CH₂O, 4H), 6.92 (s, ArH, 4H), 6.99 (s, m-Xyl-H, 1H), 7.10, 7.15, 7.24 (br s, ArH, 4H, 4H, 4H), 7.30 (t, J=7.6 Hz, m-Xyl-H, 1H), 7.44 (d, J=7.6Hz, m-Xyl-H, 2H), 7.52 (s, OH, 4H). Compound **3cd**: ¹H NMR (400 MHz, CDCl₃, 298 K) δ 1.04, 1.20, 1.30 (s, (CH₃)₃, 18H, 18H, 36H), 3.14 and 4.26 (AX, J=15.0 Hz, ArCH₂Ar, 8H), 3.45 and 4.09 (AX, $J=13.6\,\text{Hz}$, ArCH₂Ar, 8H), 4.14 (br d, $J=4.1\,\text{Hz}$, O(CH₂CH₂O)₂, $J = 4.1 \, \text{Hz},$ 4H), 4.17 (br d, O(CH₂CH₂O)₂, 4H), 5.54 (s, o-Xyl-CH₂O, 4H), 6.73 (s, ArH, 4H), 7.07 (d, J=2.0Hz, ArH, 4H), 7.14 (d, J=2.0Hz, ArH, 4H), 7.18 (s, ArH, 4H), 7.31 (m, o-Xyl-H, 2H), 7.43 (s, OH, 4H), 7.44 (m, o-Xyl-H, 2H). Compound 3ce: ¹H NMR (400 MHz, CDCl₃, 298 K) δ 1.16, 1.18, 1.20 (s,(CH₃)₃, 18H, 18H, 36H), 3.46 and 4.28 (AX, J=14.4Hz, ArCH₂Ar, 16H), 4.07 (br d, J=3.8Hz, O(CH₂CH₂O)₂, 4H), 4.12 (br d, J=4.4, O(CH₂CH₂O)₂, 4H), 4.76 (s, m-Xyl-CH₂O, 4H), 6.74, 6.99, 7.02 (br s, ArH, 4H, 4H, 4H), 7.07 (d, J=2.1 Hz, ArH, 4H), 7.13 (m, m-Xyl-H, 2H), 7.34 (m, m-Xyl-H, 2H), 7.52 (s, OH, 4H). Compound 3cf: ¹H NMR (400 MHz, CDCl₃, 298 K) δ 1.01, 1.06, 1.20 (s, (CH₃)₃, 18H, 18H, 36H), 3.32 and 4.40 (AX, J=13.1 Hz, ArCH₂Ar, 8H), 3.40–4.27 (m, OCH₂, 10H) 3.46 and 4.38 (AX, J = 14.3 Hz, ArCH₂Ar, 8H), 5.10 (br s, OCH₂, 10H), 6.93 (s, ArH, 4H), 7.10 (d, J=2.1 Hz, ArH, 4H), 7.15, 7.65 (br s, ArH, 4H, 4H), 8.02 (s, OH, 4H). Compound **3ed**: ¹H NMR (400 MHz, CDCl₃, 298 K) δ 1.07, 1.16, 1.30 (s, (CH₃)₃, 18, 18H, 36H), 3.14 and 4.47 (AX, $J=14.9\,\text{Hz}$, ArCH₂Ar, 8H), 3.48 and 4.18 (AX,

J=13.6Hz, ArCH₂Ar, 8H), 5.02, 5.46 (s, Xyl-CH₂O, 4H, 4H), 6.78, 7.04, 7.09 (s, ArH, 4H, 4H, 4H), 7.16 (d, J=1.8Hz, ArH, 4H), 7.24–7.30 (m, Xyl-H, 3H), 7.34 (d, J=6.4 Hz, m-Xyl-H, 2H), 7.35 (s, m-Xyl-H, 1H), 7.41 (d, J=7.5Hz, o-Xyl-H, 2H), 8.05 (s, OH, 4H). Compound 3ee: ¹H NMR (400 MHz, CDCl₃, 298 K) δ 1.16, 1.22 (s, (CH₃)₃, 36H, 36H), 3.47 and 4.34 (AX, J=14.7Hz, ArCH₂Ar, 16H), 4.89 (s, m-Xyl-CH₂O, 8H), 7.01, 7.07 (s, ArH, 8H, 8H), 7.22 (t, J=7.6Hz, m-Xyl-H, 2H), 7.41 (d, J=7.6Hz, m-Xyl-H, 4H), 7.56 (s, m-Xyl-H, 2H), 7.56 (s, OH, 4H). Compound **3ef**: ¹H NMR (400 MHz, CDCl₃, 298 K) δ 1.07, 1.16, 1.30 (s, (CH₃)₃, 18H, 18H, 36H), 3.14 and 4.18 (AX, J = 14.9 Hz, ArCH₂Ar, 8H), 3.48 and 4.41 (AX, ArCH₂Ar, 8H), 3.75–4.10 (br m, $J = 13.6 \, \text{Hz},$ O(CH₂CH₂O)₃, 8H), 5.02 (br s, O(CH₂CH₂O)₃, 4H), 5.46 (s, m-Xyl-CH₂O, 4H), 6.78 (s, ArH, 4H), 7.04 (d, J=2.1 Hz, ArH, 4H), 7.09 (s, ArH, 4H), 7.16 (d, J=2.1 Hz, ArH, 4H), 7.28 (m, m-Xyl-H, 1H), 7.33 (s, m-Xyl-H, 1H), 7.41 (d, J=7.4 Hz, m-Xyl-H, 2H), 8.05 (s, OH, 4H).

- 12. Equal volumes (5 mL) of solution at equal concentration $(5.5 \times 10^{-5} \text{ M})$ of compounds **3** (in CH₂Cl₂) and alkali metal picrate (in H₂O) were magnetically stirred for 48 h at 20 °C The two phases were separated and the extraction percentage $(A_0 A/A_0 \times 100)$ was determined by measuring the absorbance (A) of aqueous phase at 356 nm and the corresponding absorbance (A_0) of a blank experiment.
- (a) Moore, S. S.; Tarnowski, T. L.; Newcomb, N.; Cram, D. J. J. Am. Chem. Soc. 1977, 99, 6398; (b) Helgeson, R. C.; Weisman, G. R.; Toner; Tarnowski, T. L.; Chao, Y.; Mayer, J. M.; Cram, D. J. J. Am. Chem. Soc. 1979, 101, 4928.
- 14. Association constants were calculated from the equation $K_{\rm ass} = K_{\rm ex}/K_{\rm d}$ where $K_{\rm ex}$ and $K_{\rm d}$ are the extraction and the distribution constants, respectively according to Ref. 13 a. The experimental conditions were the following: K_d was determined by shaking (3 min with a vortex and 30 min magnetically) 50 mL of aqueous picrate solution $(10^{-2} M)$ with 75mL of CHCl₃ saturated with water. After phase separation, the CHCl₃ layer was evaporated at 60 °C under vacuum; the residue was then diluted in 5 mL CH₃CN and its absorbance measured at 375 nm at 25 °C. Kex was determined by shaking 2mL of an aqueous picrate solution $(5 \times 10^{-3} \text{ M})$ and 2mL of a 10^{-3} M calixarene solution in CHCl₃. After separation of the two phases, 1mL or 0.5mL of the CHCl₃ solution were diluted in 5mL CH₃CN. The absorption of this solution was measured against the appropriate blank solution at 375 nm at 25 °C.